Int. J. Powertrains, Vol. 7, Nos. 1/2/3, 2018

Predictive control of commercial e-vehicle using a
priori route information

Pavel Steinbauer* and Josef Husak

Faculty of Mechanical Engineering,
Czech Technical University in Prague,
Prague, Czech Republic

Email: pavel.steinbauer@fs.cvut.cz
Email: josef.husak@fs.cvut.cz
*Corresponding author

Florent Pasteur

Siemens Industry Software S.A.S. DF PL STS CAE 1D,
Lyon, France
Email: florent.pasteur@siemens.com

Petr Denk, Jan Macek and Zbynek Sika

Faculty of Mechanical Engineering,
Czech Technical University in Prague,
Prague, Czech Republic

Email: petr.denk@fs.cvut.cz

Email: jan.macek@fs.cvut.cz

Email: zbynek.sika@fs.cvut.cz

Abstract: The driving range of the vehicle is usually an issue due to the
limited energy storage capacity of the acu-pack. Thus, the e-vehicle control
towards energy consumption decrease is of extreme importance. The known
information about route properties can be used to plan torque/braking profile in
an optimal way. Several approaches are compared. The first is design approach
based on model predictive control (MPC) in combination with prior (before the
trip starts) dynamic optimisation, the other is model-predictive control using
hard limits based on route shape analyses and legal limits. The classical,
optimised PID control is used as reference driver. A detailed driving range
estimation model of a Fiat Doblo e-vehicle is the basis, including the main
e-vehicle subsystem 1D model, e-motor, battery pack, air-conditioning/heating
and EVCU. The model calibration is based on real vehicle measurements.
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1 Introduction

Current vehicles, especially electric ones are being equipped with more and more
complex controllable structures and subsystems. It means that control strategy for
complex, highly nonlinear dynamic systems must be designed. In addition, a lot of
information about planned route is known in advance. Especially slope of the route can
be obtained from open resources as well as geographic coordinates of the route. These
pieces of information are linked with legal velocity limits, traffic density etc. On the other
hand, the amount of energy stored on-board is quite limited in case of e-vehicle. In this
paper, control strategies based on detailed simulation model of the vehicle are evaluated.

The mechatronic nature of current vehicles together with widely available high
capacity data connection and various information resources attract a lot of research effort
to increase energy efficiency of vehicle operation. In particular, algorithms to find
optimal routing with respect to energy consumption [called eco-routing, e.g., (Fu et al.,
2004; Minett et al., 2011; Saboohi and Farzaneh, 2009; Barth and Boriboonsomsin,
2009)] based on 3D map data are being developed. Also, there are eco-driving initiatives
which provide drivers with guidelines for efficient behaviour and eco-driving systems
studying strategies for efficient driving within traffic with varying congestion.

Presented approach uses prior optimisation of velocity profile and complements it by
nonlinear model-based predictive controller, which adapts required velocity profile
according to the vehicle and traffic state.

The optimisation is based on segmentation of the route in sections with constant
properties. Thus, special semi-integrated, fast numerical solution of a set of nonlinear
differential equations can be used based on in-section averaged parametres. Between
sections, the values change. Furthermore, backward in-time predictor is used for finding
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maximum velocity, state-of-charge (SOC) and heating, ventilating, air-conditioning
(HVAC) power envelope, satisfying future corrector forward-going final solution of
braking, charging of batteries and HVAC control with heat pumps and heat accumulation
in electric equipment cooling system and HVAC system, including car body thermal
capacity. Contribution of optimisation potential from Pareto sets is used. New methods
for cargo load estimation from available acceleration and motor power signals are
developed.

Figure 1 Control hierarchy structure (see online version for colours)

oute definitior Measured (history) Vehicle Target final

' v data data time limit

n "map” data (position data - (GPS) & SO
(1SON) model Load m,

\ \

Cloud OVRP
Calculation
(Long time horizon
prediction)

OVRP

RecalculationRequest
VelocityRouteProfile

Short time horizon predictive control
(PACA)

FrontVehicleDistance

Torque limit
Velocity recommendation

i

2 Vehicle model design and verification

The control design is carried out before the vehicle is available for application.
Furthermore, the verification and design experiments would be quite costly on the real
vehicle. So development approach design-by-simulation and software in the loop is used.

The vehicle energy management (VEM) simulator is a LMS.IMAGINE.Lab Amesim
1D virtual model of the Fiat Doblo electric vehicle. This simulation platform is well
suited to carry on global vehicle energy consumption evaluation (Badin et al., 2015;
Maroteaux et al., 2015). It is a driving range prediction model, containing main
subsystems: vehicle dynamics 1D model, e-motor, battery pack, air-conditioning/heating
and control unit. In this paper, the VEM model features:

1 A 1D vehicle model. Both front and rear axles are modelled. It takes into account
wind speed, road slope, variable load, braking and driving torque.
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A mission profile. It defines the vehicle linear speed profile as a function of time. It
includes also wind speed and road slop definition.

A driver model. It is based on PID control block to respect the vehicle velocity
mission profile.

An electric powertrain. It is an average model of an electric machine and DC
converter using data-files. The losses, the minimum and the maximum torques are
defined with data-files of the real machine measurements. It takes into account motor
speed and battery maximum battery voltage limit.

A high voltage battery. It is a quasi-static equivalent electric circuit model. The
model parametres are defined with the datasheet measure? Information. It takes into
account the open circuit voltage (OCV) and resistance dependent on a function of
SOC and temperature. A simplified aging model is also included.

A vehicle control unit (VCU). It computes the motor torque demand according to
vehicle state with respect to a pedal position, battery SOC, inverter power limitation.
High frequency control dynamics such as ESP have been neglected.

The HVAC system is defined as a simplified reduced model. Equivalent cooling and
heating performance have been fitted according to a detailed model results.

The vehicle auxiliaries, i.e., all the vehicle electric equipment that belongs to the low
voltage on board network of the vehicle (12V).

Figure 2 LMS-Amesim VEM model (see online version for colours)
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The operating principle of this simulation is the following. The driver model computes
the braking and acceleration pedal signals in order to match the speed profile. The VCU
(voltage control unit) converts these commands into a motor torque and mechanical
braking command. In that model, there is full regenerative braking torque until reaching
the maximum regenerative braking limit. This assumption is justified as the accelerations
involved remains small. In practice it is a good approximation for a VEM model. The
high voltage battery supplies the electric powertrain and other auxiliaries. In order to
achieve a required torque, the electric powertrain model computes the motor current
based on a losses table as a function of motor torque, motor speed and battery voltage.
Thus, this model assumes a quasi-static variation of torque request compared to the motor
natural time constant. This condition is respected in the majority of standard driving
situations.

In order to validate this modelling approach, the model has been set up and compared
to the baseline vehicle. The vehicle acceleration time has been checked for several
vehicle loads. The vehicle energy range and mean consumption have been successfully
predicted for the NEDC profile. Additionally, a real velocity profile of the vehicle has
been recorded. This data set includes the vehicle CAN bus data time synchronised with
the GPS record. This one-hour driving cycle mixes urban and extra urban conditions. In
Figure 3, the high voltage battery measured is compared to the model results. A good
correlation is achieved between simulation and measurements in all driving situations of
the profile. The difference remains acceptable when considering some missing data
during the measurement (wind measurements, road slope inaccuracies etc.).

Figure 3 Comparison of simulation (red) and measure (green) of HV battery current
(see online version for colours)
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The standalone VEM model has to be modified to be integrated into the off the line
predictive controller. A coupling block is added (Figure 4) to define the quantities to be
exchanged between LMS-Amesim and Simulink.

The driver model is removed and the Amesim model takes as input the controller
torque request.
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Figure 4 Amesim-Simulink coupling block which has driver model disabled (see online version
for colours)
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Optimal velocity defined along the route can be optimised before the trip starts. It is
based on suitable discretisation of the route into sections with constant characteristic
properties (maximum achievable velocity, slope, rolling resistance etc.).

Figure 5 Route section classification based on physical properties of the road shape
(see online version for colours)
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Velocity profile in each section is described by four phases: Acceleration phase with
constant acceleration followed by constant velocity phase, then coasting and braking with
constant deceleration. Any piecewise velocity profile can be achieved, as the length of
any phase can be of zero length. Velocity profile in each section is thus described by five
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parametres: a, [m.s 2], s, [m] — acceleration during acceleration phase and its length, ag
[m.s 2], sq [m] — deceleration during decelaration phase and its length, v, [m.s"'] velocity
in the beginning of the section (equal to v4 — output velocity of the previous section),

vy =+f2a,8, +VE, V3 =254 + V] )
Scoa = f(VZa V3)9 Scon =8 = 8a =84 — Scoa (x, u, t)

The velocity profile is optimised using dynamic optimisation (Biegler, 2007; Steinbauer
et al, 2016) and provides optimal strategy to achieve savings trading within the
given — available travel time.

Figure 6 Route section velocity description (see online version for colours)
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The dynamic optimisation is performed in three steps (Steinbauer et al., 2016). The
backward calculation determines maximum velocity envelope, which can be fulfilled
based on deceleration capabilities of the vehicle. The forward calculation determines
maximum velocity envelope, which can be achieved. Finally, the third step performs
global optimisation of all route sections with their parametres.

It is optimised by dynamic system optimisation methods, which were developed for
optimisation of complex and nonlinear dynamic processes. They are based on
discretisation of the state trajectory and replacement of highly nonlinear dynamic model
by algebraic functions.

The optimisation criterion (cost function) is overall consumed energy for the whole
route. It is calculated by simplified energy consumption relations (mainly algebraic) for
each section. The objective function is based on sum of used energies in each section:

e rolling resistance — Ef
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e slope resistance — £

e acceleration resistance — £,

e  air resistance — E,,

e additional unit of vehicle — E,
e  heating/air conditioning — Ej.

The objective function is a function of quintuplet (v,, a,, s,, a4, Sq) of section parametres
multiplied by number of section, along the selected trajectory.

Figure 7 Optimised velocity profile (see online version for colours)
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For such defined optimisation problem and the objective function, the interval of values
of the objective function is limited by local and global constraints, named ‘optimisation
conditions’. The local optimisation conditions are defined for individual sections of the
selected trajectory. They limit the mutual relation of optimisation parametres in each
section and prescribed fixed length of each section. Further constraints follow from
previous Backward and Forward maximum velocity envelope calculation steps. The
minimum velocity envelope must be defined as well, because otherwise to low velocity
profile recommendation segments may be calculated which would, in real traffic, be a
serious problems because of interaction with faster vehicles in the flow.

Global optimisation conditions define the maximum and minimum values of
optimisation parametres, define the continuity of the velocity profile at the endpoint of all
sections of the trajectory and the total time of travel of the vehicle along the selected
trajectory. All of these conditions form constraint parametre space are to be searched.

Dynamic optimisation of the given problem is based on optimisation technique called,
‘trust-region methods for nonlinear minimisation’. This method is based on the principle
of replacing the objective function in a vicinity of an initial estimate by approximation
functions. For this approximation function must hold the local and global optimisation
conditions.

By finding the minima of this function in the vicinity of the initial estimate the first
iteration of the optimisation process is found. This iteration is used as the initial estimate
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for second iteration. When the difference of objective function in two consecutive
iterations is less than the specified value, the last iteration is considered local minimum.
All points of potential minima of the objective function are found initially. The smallest
element of this group is the global minimum of the objective function in a prescribed area
under consideration.

The example of resulting velocity profile shape is shown in Figure 7.

However, the real drive always differs due to the surrounding traffic and vehicle
model differences. That is why the on-board real-time controller must be used to adapt
the actual torque to achieve optimal behaviour.

4 Closed loop control

The predictive control (model predictive control — MPC) was chosen as a basic tool. It is
one of the most advanced methods for control design. This control method was first
developed for the petrochemical industry, however, the method become the most widely
used advanced technology management throughout the industry. The advantages of this
method of regulation are mainly its relative straightforward usage, the ability to control
large systems with many inputs and outputs, utilisation of foreseen future requirements
on output variables and possibility to include various constraints on control variables,
output variables and even their rates (Cannon, 2015).

Figure 8 Prediction control principle (see online version for colours)
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MPC calculations are based on actual measurements of input variables and the prediction
of future output values. The aim is to calculate optimal sequence of control actions within
the prediction horizon (with respect to selected criteria of optimality) so that the predicted
response reached the required value in an optimum manner minimising criterion of
optimality defined at prediction horizon.
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Ji = Zj.v:l ((YJ{H — Wi )Qy (Yk+j ~ Wiej ) + UL/Ryukﬂ—l ) 2

This resembles open loop control, but only a few first values (control horizon) are used
and the calculation is repeated. So, the control loop is closed and the control system can
react on deviation of the real system from predicted behaviour (Figure 8).

The MPC approach is straightforward for linear models, so the nonlinear Amesim
model.

x=f(x,u,t)

3
y=g(x,u) ©)

was linearised using partial derivatives of ‘f” and ‘g’ funtions according to x and u
vectors at operating point into form.

Ax = AAx+ BAu

4
y=CAx+ DAu @

The operating points were selected for system inputs: cabin external temperature
difference request [°C], vehicle load [kg], wind speed [m.s '], normalised torque [—], road
slope [%] and outputs: Vehicle acceleration [m/s*], high battery voltage (HV) [V], HV
battery current [A], derivative of battery SOC [s™'], vehicle velocity [m.s™'].

The continuous linear state space model (4) was discretised and used for linear MPC
design, including stability considerations (Appendix I)

u =e (GTQG+R) ™ GTQ(~fix )+e (GTQG+R)” GTQW (5)

However, the resulting linear controller is valid only close to the linearisation point. To
cover nonlinearity of the e-vehicle in the whole range of operating conditions, the
linearisation grid of operating points was chosen (Figure 9). For each operating point the
linear model was derived and used for control u =—K soc) Xk T Kwv,soc) design.

Figure 9 Linearisation grid (see online version for colours)
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In order to check the validity of this approach, each linearised model has been compared
with the original nonlinear model. Based on this verification, the linearisation grid
density has been adapted to ensure sufficiently accurate results (Figure 9).

Figure 10 Linear (red) and nonlinear (green) model response to a torque demand decrease at 0.1s
(see online version for colours)
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These controllers run simultaneously and combined so that suitable output is selected
according to the position in the SOC-velocity space. The switching effect is reduced
using rate limit for manipulated variable (torque).
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The relatively high order linear models are obtained by linearisation routine. The
model reduction is thus used to obtain control design model of acceptable size.
Unfortunately, the resulting linear model has generally non-zero D matrix. The following
method is used to develop model suitable for MPC design procedure. The state-space
model is extended by new states based on original system outputs.

Y=

(-Y+CX+DU), T<< ©)

1
T |Re (Amax )|

New output vector ‘z’ is defined as

z-[0.1,] 7] o

It enables to formulate state description with new 4,,, B, and C, matrices

. 0.
£: i Y { + i U Z:[va I, { (8)
Yy |1 1 Y 1 ——J|Y
= —C ——1I,, |-= —D I
T_ T_ T_ n
[ ——— ——
A,, B,

For these system matrices the MPC control (Appendix 1) can be used.

The MPC controller design requires selection of many parametres, e.g., controller
sampling period, prediction horizon length, control horizon length, maximum change of
the required torque (rate). On the other hand, detailed keeping of predefined — selected
velocity profile may result in higher energy consumption. These are two conflicting
criteria, so Pareto set based on genetic algorithms was utilised to investigate proper
settings. Cost functions were deviation from required velocity trajectory

¢ 2
DMPC = jo (V ~Vieq ) dt (9)

And energy consumption

t t t 27Tnmut
Expe = [ Pudt = || Onor Mot = | S0 M (10)
0 0 0o 60
Figure 11 shows resulting Pareto set of possible optimal nonlinear MPC controllers. As
reference, PID controller with Ziegler-Nichols settings was selected.

The global stability of closed loop system with such relatively complicated control is
difficult to formally establish. However, stability of MPC control of linear system can be
ensured, as the control design results in one closed loop gain matrix. In addition, the
overall behaviour of the controlled vehicle is checked by simulation experiments.

The simulation results show that nonlinear model-based predictive controller may
provide superior behaviour in comparison with classical PID control. Not only in terms of
energy savings, but also in fluent control actions, which are much more comfortable for
passengers (e.g., circled torque at a time of 10s in Figure 12).

Using Pareto multi-criteria optimisation, cost (energy consumption) of keeping
predefined velocity profile is investigated and suitable settings of MPC parametres are
selected.
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Figure 11 Pareto set of required velocity trajectory deviation and energy consumption
(see online version for colours)
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Figure 12 Demonstration of improved controller behaviour (see online version for colours)
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Figure 13 Demonstration of energy savings on design (short) track (see online version
for colours)
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Figure 14 Control behaviour for reference PID controller and MPC controller (see online version
for colours)
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Figure 14 Control behaviour for reference PID controller and MPC controller (continued)
(see online version for colours)
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Figure 15 Energy consumption comparison (see online version for colours)
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In Figure 13 is shown energy saving potential of MPC control on short (design) track,
shown in Figure 12. MPC controller ensures smoother control actions leading to lower
energy consumption while still maintaining the required velocity profile.

The resulting selected nonlinear MPC controller was tested on reference route of the
length of 18 km. Reference control was a discrete PID controller, trying to follow pre-
optimised velocity profile. The P, I and D components of the controller were tuned using
the Ziegler-Nichols method.

The PID controller exhibits high fluctuation of controlled variable (torque), even
switching between acceleration and deceleration (braking) in subsequent control inputs.
In contrary, MPC controller exhibits quite smooth control trajectory without braking and
the energy consumption is also improved.
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In Figure 14 is presented confirmation of energy savings achieved on long route
while using nonlinear MPC controller comparing to optimised PID controller.

5 Conclusions

The combined control strategy for electric vehicle has been demonstrated, together with
preliminary results. The comparison has shown that control design based on accurate
MPC provides significant improvements of control behaviour over traditional techniques.
The nonlinear control based on MPC gain scheduling and MPC Pareto optimisation
demonstrate to be effective tools for control approach for energy savings. The Pareto
multi criteria optimisation also supports empirical practical observation that too strict
following of pre-optimised velocity profile leads to excessive energy consumption.
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Appendix

The continuous state space model can be integrated into form
T
x(f) = e2=0) x(ty) +J. =9 Bu(r)dr (Al)
0

And using discrete time t = k.T the equation is reformulated into form
T
X(k+1) = AT x(k)+J' A dr Bu(t)dr (A2)
0
Using first members of Taylor expansion for e¢** = I + AT = M and
T
j e dtB=1T.B =N, the discrete time model can be written into discrete state space
0
form

X+l = Mx; + Nuy (A3)
Vi =Cxy

The outputs in future time instants follows from recurrent substitution of previous
equation on discrete time horizon N.

Vit = Cxpar = C(Mxy + Nuy )

(A4)
Vien = CXpuy = C(Mxk+N—l + Nuginva ) =
= CMNXk + CMN_INMk +--+ CNuy,y-1
Introducing matrices
CM Uy
CN ... 0
CM? . . . Sy
f= Xk =f1Xk G= . . . U= (AS)
CMY-'N - CN
CM¥V Ui N1

Outputs yy+; and required outputs wy; can be written over whole prediction horizon N in
the matrix form

Yi+ Wi+l
W
Y= 7 _frGU, w=| E? (A6)
Yi+nN WiksN

The criteria J; can be written in the matrix form
Ji=(Y-W)TQ(Y-W)+U'RU (A7)

Then for minimum of J; following holds as long as input uy is unlimited:
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a,
ou”

(A8)

And substituting from (4) and (5) and several treatments leads into control matrix for
whole prediction horizon

U=(G™QG +R)" GTQ(W —f) (A9)

To choose only first control action at time instant k, we can, using zero and unit square
matrices with size of number of inputs, form selection matrix

= Ii Oi Oi
e =] ] (A10)
Ui =¢Cu
Considering (4), the control action can be written as
u =er (GTQG+R) ™ GTQ(~fixy ) +e (GTQG+R) " GTQW (A11)

Introduction of closed loop gain matrix K = ¢; (G'QG+R)'G'Qf; and feed forward part
Ky = e (G'QG+R)'G'QW yields control law, consisting of state feedback and
feedthrough components

Uy = —KXk + KW (AlZ)

So stability of the controlled system can be easily checked by condition for closed loop
pole position for discrete system

|eig(M —NK)| <1 (A13)

The equation (12) does not hold for MPC control with constraints, introduced in linear
form

HU+LY <b (A14)
Which are solved by quadratic programming together with
uj, =argmin, Ji (A15)

In this case, (12) is only necessary stability condition, but not sufficient. There is no
straightforward stability condition for such case. Approach based on numerically
evaluated Lyapunov function (based on optimality criteria J, extended into infinite time
using discrete Ricatti equation) and its numerical time derivative can be used. Suitably
large subspace of the state space must be selected.
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Used symbols
Symbol Unit Description
a m.s > acceleration (— for deceleration)
a, m.s > acceleration in driven (motor active) mode
ag m.s > deceleration in coast-down mode (absolute value)
Sd m Length of acceleration phase
Sa m Length of deceleration phase
vy m.s™' Section entry velocity
A% m.s! Constant velocity in the middle phase of the section
V3 m.s™ Velocity in the beginning of braking phase
V4 m.s™' Section output velocity
Scoa m Length of coasting down phase
Secon m Length of phase with constant velocity
I - Optimality criterion for model predictive controller design
Yk - Vector of system outputs at discrete time k
Wi - Vector of required system outputs at discrete time k
Qy - Optimality output weighting matrix
Ry - Optimality input weighting matrix
T s Sampling period
M, N Discrete linear dynamic system matrices
A,B,C,D Linear dynamic system matrices produced by linearisation
A,, B,, C, Modified system matrices for predictive control design
SOC State of charge
HVAC Heating, ventilating, air-conditioning
MPC Model predictive control
PACA Predictive adaptive control algorithm
VCU Voltage control unit




