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Abstract: The driving range of the vehicle is usually an issue due to the  
limited energy storage capacity of the acu-pack. Thus, the e-vehicle control 
towards energy consumption decrease is of extreme importance. The known 
information about route properties can be used to plan torque/braking profile in 
an optimal way. Several approaches are compared. The first is design approach 
based on model predictive control (MPC) in combination with prior (before the 
trip starts) dynamic optimisation, the other is model-predictive control using 
hard limits based on route shape analyses and legal limits. The classical, 
optimised PID control is used as reference driver. A detailed driving range 
estimation model of a Fiat Doblo e-vehicle is the basis, including the main  
e-vehicle subsystem 1D model, e-motor, battery pack, air-conditioning/heating 
and EVCU. The model calibration is based on real vehicle measurements. 

Keywords: e-vehicle; model predictive control; MPC; range extension; range 
estimation model. 
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1 Introduction 

Current vehicles, especially electric ones are being equipped with more and more 
complex controllable structures and subsystems. It means that control strategy for 
complex, highly nonlinear dynamic systems must be designed. In addition, a lot of 
information about planned route is known in advance. Especially slope of the route can 
be obtained from open resources as well as geographic coordinates of the route. These 
pieces of information are linked with legal velocity limits, traffic density etc. On the other 
hand, the amount of energy stored on-board is quite limited in case of e-vehicle. In this 
paper, control strategies based on detailed simulation model of the vehicle are evaluated. 

The mechatronic nature of current vehicles together with widely available high 
capacity data connection and various information resources attract a lot of research effort 
to increase energy efficiency of vehicle operation. In particular, algorithms to find 
optimal routing with respect to energy consumption [called eco-routing, e.g., ( Fu et al., 
2004; Minett et al., 2011; Saboohi and Farzaneh, 2009; Barth and Boriboonsomsin, 
2009)] based on 3D map data are being developed. Also, there are eco-driving initiatives 
which provide drivers with guidelines for efficient behaviour and eco-driving systems 
studying strategies for efficient driving within traffic with varying congestion. 

Presented approach uses prior optimisation of velocity profile and complements it by 
nonlinear model-based predictive controller, which adapts required velocity profile 
according to the vehicle and traffic state. 

The optimisation is based on segmentation of the route in sections with constant 
properties. Thus, special semi-integrated, fast numerical solution of a set of nonlinear 
differential equations can be used based on in-section averaged parametres. Between 
sections, the values change. Furthermore, backward in-time predictor is used for finding 
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maximum velocity, state-of-charge (SOC) and heating, ventilating, air-conditioning 
(HVAC) power envelope, satisfying future corrector forward-going final solution of 
braking, charging of batteries and HVAC control with heat pumps and heat accumulation 
in electric equipment cooling system and HVAC system, including car body thermal 
capacity. Contribution of optimisation potential from Pareto sets is used. New methods 
for cargo load estimation from available acceleration and motor power signals are 
developed. 

Figure 1 Control hierarchy structure (see online version for colours) 

 

2 Vehicle model design and verification 

The control design is carried out before the vehicle is available for application. 
Furthermore, the verification and design experiments would be quite costly on the real 
vehicle. So development approach design-by-simulation and software in the loop is used. 

The vehicle energy management (VEM) simulator is a LMS.IMAGINE.Lab Amesim 
1D virtual model of the Fiat Doblo electric vehicle. This simulation platform is well 
suited to carry on global vehicle energy consumption evaluation (Badin et al., 2015; 
Maroteaux et al., 2015). It is a driving range prediction model, containing main 
subsystems: vehicle dynamics 1D model, e-motor, battery pack, air-conditioning/heating 
and control unit. In this paper, the VEM model features: 

1 A 1D vehicle model. Both front and rear axles are modelled. It takes into account 
wind speed, road slope, variable load, braking and driving torque. 
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2 A mission profile. It defines the vehicle linear speed profile as a function of time. It 
includes also wind speed and road slop definition. 

3 A driver model. It is based on PID control block to respect the vehicle velocity 
mission profile. 

4 An electric powertrain. It is an average model of an electric machine and DC 
converter using data-files. The losses, the minimum and the maximum torques are 
defined with data-files of the real machine measurements. It takes into account motor 
speed and battery maximum battery voltage limit. 

5 A high voltage battery. It is a quasi-static equivalent electric circuit model. The 
model parametres are defined with the datasheet measure? Information. It takes into 
account the open circuit voltage (OCV) and resistance dependent on a function of 
SOC and temperature. A simplified aging model is also included. 

6 A vehicle control unit (VCU). It computes the motor torque demand according to 
vehicle state with respect to a pedal position, battery SOC, inverter power limitation. 
High frequency control dynamics such as ESP have been neglected. 

7 The HVAC system is defined as a simplified reduced model. Equivalent cooling and 
heating performance have been fitted according to a detailed model results. 

8 The vehicle auxiliaries, i.e., all the vehicle electric equipment that belongs to the low 
voltage on board network of the vehicle (12V). 

Figure 2 LMS-Amesim VEM model (see online version for colours) 
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The operating principle of this simulation is the following. The driver model computes 
the braking and acceleration pedal signals in order to match the speed profile. The VCU 
(voltage control unit) converts these commands into a motor torque and mechanical 
braking command. In that model, there is full regenerative braking torque until reaching 
the maximum regenerative braking limit. This assumption is justified as the accelerations 
involved remains small. In practice it is a good approximation for a VEM model. The 
high voltage battery supplies the electric powertrain and other auxiliaries. In order to 
achieve a required torque, the electric powertrain model computes the motor current 
based on a losses table as a function of motor torque, motor speed and battery voltage. 
Thus, this model assumes a quasi-static variation of torque request compared to the motor 
natural time constant. This condition is respected in the majority of standard driving 
situations. 

In order to validate this modelling approach, the model has been set up and compared 
to the baseline vehicle. The vehicle acceleration time has been checked for several 
vehicle loads. The vehicle energy range and mean consumption have been successfully 
predicted for the NEDC profile. Additionally, a real velocity profile of the vehicle has 
been recorded. This data set includes the vehicle CAN bus data time synchronised with 
the GPS record. This one-hour driving cycle mixes urban and extra urban conditions. In 
Figure 3, the high voltage battery measured is compared to the model results. A good 
correlation is achieved between simulation and measurements in all driving situations of 
the profile. The difference remains acceptable when considering some missing data 
during the measurement (wind measurements, road slope inaccuracies etc.). 

Figure 3 Comparison of simulation (red) and measure (green) of HV battery current  
(see online version for colours) 
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The standalone VEM model has to be modified to be integrated into the off the line 
predictive controller. A coupling block is added (Figure 4) to define the quantities to be 
exchanged between LMS-Amesim and Simulink. 

The driver model is removed and the Amesim model takes as input the controller 
torque request. 
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Figure 4 Amesim-Simulink coupling block which has driver model disabled (see online version 
for colours) 

  

3 Route dynamic optimisation 

Optimal velocity defined along the route can be optimised before the trip starts. It is 
based on suitable discretisation of the route into sections with constant characteristic 
properties (maximum achievable velocity, slope, rolling resistance etc.). 

Figure 5 Route section classification based on physical properties of the road shape  
(see online version for colours) 

 

Velocity profile in each section is described by four phases: Acceleration phase with 
constant acceleration followed by constant velocity phase, then coasting and braking with 
constant deceleration. Any piecewise velocity profile can be achieved, as the length of 
any phase can be of zero length. Velocity profile in each section is thus described by five 
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parametres: aa [m.s–2], sa [m] – acceleration during acceleration phase and its length, ad 
[m.s–2], sd [m] – deceleration during decelaration phase and its length, v1 [m.s–1] velocity 
in the beginning of the section (equal to v4 – output velocity of the previous section), 

( )
2 2

2 31 4

2 3

2 , 2
, , ( , , )

a a d d

coa con a d coa

v a s v v a s v
s f v v s s s s s x u t
= + = +
= = − − −

 (1) 

The velocity profile is optimised using dynamic optimisation (Biegler, 2007; Steinbauer 
et al., 2016) and provides optimal strategy to achieve savings trading within the  
given – available travel time. 

Figure 6 Route section velocity description (see online version for colours) 

 

The dynamic optimisation is performed in three steps (Steinbauer et al., 2016). The 
backward calculation determines maximum velocity envelope, which can be fulfilled 
based on deceleration capabilities of the vehicle. The forward calculation determines 
maximum velocity envelope, which can be achieved. Finally, the third step performs 
global optimisation of all route sections with their parametres. 

It is optimised by dynamic system optimisation methods, which were developed for 
optimisation of complex and nonlinear dynamic processes. They are based on 
discretisation of the state trajectory and replacement of highly nonlinear dynamic model 
by algebraic functions. 

The optimisation criterion (cost function) is overall consumed energy for the whole 
route. It is calculated by simplified energy consumption relations (mainly algebraic) for 
each section. The objective function is based on sum of used energies in each section: 

• rolling resistance – Ef 
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• slope resistance – Es 

• acceleration resistance – Ea 

• air resistance – Ev 

• additional unit of vehicle – Et 

• heating/air conditioning – Eh. 

The objective function is a function of quintuplet (v2, aa, sa, ad, sd) of section parametres 
multiplied by number of section, along the selected trajectory. 

Figure 7 Optimised velocity profile (see online version for colours) 

 

For such defined optimisation problem and the objective function, the interval of values 
of the objective function is limited by local and global constraints, named ‘optimisation 
conditions’. The local optimisation conditions are defined for individual sections of the 
selected trajectory. They limit the mutual relation of optimisation parametres in each 
section and prescribed fixed length of each section. Further constraints follow from 
previous Backward and Forward maximum velocity envelope calculation steps. The 
minimum velocity envelope must be defined as well, because otherwise to low velocity 
profile recommendation segments may be calculated which would, in real traffic, be a 
serious problems because of interaction with faster vehicles in the flow. 

Global optimisation conditions define the maximum and minimum values of 
optimisation parametres, define the continuity of the velocity profile at the endpoint of all 
sections of the trajectory and the total time of travel of the vehicle along the selected 
trajectory. All of these conditions form constraint parametre space are to be searched. 

Dynamic optimisation of the given problem is based on optimisation technique called, 
‘trust-region methods for nonlinear minimisation’. This method is based on the principle 
of replacing the objective function in a vicinity of an initial estimate by approximation 
functions. For this approximation function must hold the local and global optimisation 
conditions. 

By finding the minima of this function in the vicinity of the initial estimate the first 
iteration of the optimisation process is found. This iteration is used as the initial estimate  
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for second iteration. When the difference of objective function in two consecutive 
iterations is less than the specified value, the last iteration is considered local minimum. 
All points of potential minima of the objective function are found initially. The smallest 
element of this group is the global minimum of the objective function in a prescribed area 
under consideration. 

The example of resulting velocity profile shape is shown in Figure 7. 
However, the real drive always differs due to the surrounding traffic and vehicle 

model differences. That is why the on-board real-time controller must be used to adapt 
the actual torque to achieve optimal behaviour. 

4 Closed loop control 

The predictive control (model predictive control – MPC) was chosen as a basic tool. It is 
one of the most advanced methods for control design. This control method was first 
developed for the petrochemical industry, however, the method become the most widely 
used advanced technology management throughout the industry. The advantages of this 
method of regulation are mainly its relative straightforward usage, the ability to control 
large systems with many inputs and outputs, utilisation of foreseen future requirements 
on output variables and possibility to include various constraints on control variables, 
output variables and even their rates (Cannon, 2015). 

Figure 8 Prediction control principle (see online version for colours) 

 

MPC calculations are based on actual measurements of input variables and the prediction 
of future output values. The aim is to calculate optimal sequence of control actions within 
the prediction horizon (with respect to selected criteria of optimality) so that the predicted 
response reached the required value in an optimum manner minimising criterion of 
optimality defined at prediction horizon. 
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( ) ( )( )11 11
y w Q y w u R u

N T T T
k y k j k j y k jk k k jj

J + + + −+ + +=
= − − +∑  (2) 

This resembles open loop control, but only a few first values (control horizon) are used 
and the calculation is repeated. So, the control loop is closed and the control system can 
react on deviation of the real system from predicted behaviour (Figure 8). 

The MPC approach is straightforward for linear models, so the nonlinear Amesim 
model. 

( , , )
( , )

x f x u t
y g x u
=
=

�
 (3) 

was linearised using partial derivatives of ‘f’ and ‘g’ funtions according to x and u 
vectors at operating point into form. 

x A x B u
y C x D u
Δ = Δ + Δ
= Δ + Δ

�
 (4) 

The operating points were selected for system inputs: cabin external temperature 
difference request [°C], vehicle load [kg], wind speed [m.s–1], normalised torque [–], road 
slope [%] and outputs: Vehicle acceleration [m/s2], high battery voltage (HV) [V], HV 
battery current [A], derivative of battery SOC [s–1], vehicle velocity [m.s–1]. 

The continuous linear state space model (4) was discretised and used for linear MPC 
design, including stability considerations (Appendix I) 

( ) ( ) ( )1 1T T T T
k I 1 k Iu e G QG R G Q f x e G QG R G QW− −
= + − + +  (5) 

However, the resulting linear controller is valid only close to the linearisation point. To 
cover nonlinearity of the e-vehicle in the whole range of operating conditions, the 
linearisation grid of operating points was chosen (Figure 9). For each operating point the 
linear model was derived and used for control uk = –K(v,SOC) xk + Kw(v,SOC) design. 

Figure 9 Linearisation grid (see online version for colours) 
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In order to check the validity of this approach, each linearised model has been compared 
with the original nonlinear model. Based on this verification, the linearisation grid 
density has been adapted to ensure sufficiently accurate results (Figure 9). 

Figure 10 Linear (red) and nonlinear (green) model response to a torque demand decrease at 0.1s 
(see online version for colours) 

 

 

These controllers run simultaneously and combined so that suitable output is selected 
according to the position in the SOC-velocity space. The switching effect is reduced 
using rate limit for manipulated variable (torque). 
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The relatively high order linear models are obtained by linearisation routine. The 
model reduction is thus used to obtain control design model of acceptable size. 
Unfortunately, the resulting linear model has generally non-zero D matrix. The following 
method is used to develop model suitable for MPC design procedure. The state-space 
model is extended by new states based on original system outputs. 

( )max

1 1( . . ),
Re

Y Y C X DU T
T λ

= − + + <<�  (6) 

New output vector ‘z’ is defined as 

0yx yy
XZ I
Y

⎡ ⎤= ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (7) 

It enables to formulate state description with new An, Bn and Cn matrices 

0
0

1 1 1
n

n n

xy
yx yy

yy C

A B

X A X B XU Z I
Y YY C I D

T T T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�
� ��	�


���	��
 �	


 (8) 

For these system matrices the MPC control (Appendix 1) can be used. 
The MPC controller design requires selection of many parametres, e.g., controller 

sampling period, prediction horizon length, control horizon length, maximum change of 
the required torque (rate). On the other hand, detailed keeping of predefined – selected 
velocity profile may result in higher energy consumption. These are two conflicting 
criteria, so Pareto set based on genetic algorithms was utilised to investigate proper 
settings. Cost functions were deviation from required velocity trajectory 

( )
2

0

t
MPC reqD v v dt= −∫  (9) 

And energy consumption 

0 0 0

2. .
60

t t t mot
MPC mot mot mot mot

πnE P dt ω M dt M dt= = =∫ ∫ ∫  (10) 

Figure 11 shows resulting Pareto set of possible optimal nonlinear MPC controllers. As 
reference, PID controller with Ziegler-Nichols settings was selected. 

The global stability of closed loop system with such relatively complicated control is 
difficult to formally establish. However, stability of MPC control of linear system can be 
ensured, as the control design results in one closed loop gain matrix. In addition, the 
overall behaviour of the controlled vehicle is checked by simulation experiments. 

The simulation results show that nonlinear model-based predictive controller may 
provide superior behaviour in comparison with classical PID control. Not only in terms of 
energy savings, but also in fluent control actions, which are much more comfortable for 
passengers (e.g., circled torque at a time of 10s in Figure 12). 

Using Pareto multi-criteria optimisation, cost (energy consumption) of keeping 
predefined velocity profile is investigated and suitable settings of MPC parametres are 
selected. 
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Figure 11 Pareto set of required velocity trajectory deviation and energy consumption  
(see online version for colours) 

 

Figure 12 Demonstration of improved controller behaviour (see online version for colours) 
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Figure 13 Demonstration of energy savings on design (short) track (see online version  
for colours) 

 

Figure 14 Control behaviour for reference PID controller and MPC controller (see online version 
for colours) 
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Figure 14 Control behaviour for reference PID controller and MPC controller (continued)  
(see online version for colours) 

 

Figure 15 Energy consumption comparison (see online version for colours) 

 

In Figure 13 is shown energy saving potential of MPC control on short (design) track, 
shown in Figure 12. MPC controller ensures smoother control actions leading to lower 
energy consumption while still maintaining the required velocity profile. 

The resulting selected nonlinear MPC controller was tested on reference route of the 
length of 18 km. Reference control was a discrete PID controller, trying to follow pre-
optimised velocity profile. The P, I and D components of the controller were tuned using 
the Ziegler-Nichols method. 

The PID controller exhibits high fluctuation of controlled variable (torque), even 
switching between acceleration and deceleration (braking) in subsequent control inputs. 
In contrary, MPC controller exhibits quite smooth control trajectory without braking and 
the energy consumption is also improved. 
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In Figure 14 is presented confirmation of energy savings achieved on long route 
while using nonlinear MPC controller comparing to optimised PID controller. 

5 Conclusions 

The combined control strategy for electric vehicle has been demonstrated, together with 
preliminary results. The comparison has shown that control design based on accurate 
MPC provides significant improvements of control behaviour over traditional techniques. 
The nonlinear control based on MPC gain scheduling and MPC Pareto optimisation 
demonstrate to be effective tools for control approach for energy savings. The Pareto 
multi criteria optimisation also supports empirical practical observation that too strict 
following of pre-optimised velocity profile leads to excessive energy consumption. 
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Appendix 

The continuous state space model can be integrated into form 

( ) ( )0A A( )
0

0
( ) B ( )

T
t t t τx t e x t e u τ dτ− −= + ∫  (A1) 

And using discrete time t = k.T the equation is reformulated into form 

( )AT A
0

( 1) .B ( )
T

τx k e x k e dτ u τ dτ+ = + ∫  (A2) 

Using first members of Taylor expansion for eAτ = I + AT = M and 
A

0
.B IT.B N,

T
τe dτ = =∫  the discrete time model can be written into discrete state space 

form 

1x Mx Nu
y Cx

k k k

k k

+ = +
=

 (A3) 

The outputs in future time instants follows from recurrent substitution of previous 
equation on discrete time horizon N. 

( )

( )

1 1

1 1
1

1

y Cx Mx Nu

y Cx Mx Nu
x

k k k k

k N k N k N k N
N N

k k k N

C

C
CM CM Nu CNu

+ +

+ + + − + −

−
+ −

= = +

= = + =
= + + +

"

"

 (A4) 

Introducing matrices 

2
1

1
1

1

CM u
CN 0

CM u
f x f x G U

CM N CN
CM u

k

k
k k

N
N

k N

+

−

+ −

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

…
# % #

… …
"

 (A5) 

Outputs yk+i and required outputs wk+i can be written over whole prediction horizon N in 
the matrix form 

1 1

2 2

y w
y w

Y f GU, w

y w

k k

k k

k N k N

+ +

+ +

+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = + =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

" "
 (A6) 

The criteria Jk can be written in the matrix form 

(Y W) Q(Y W) U RUT T
kJ = − − +  (A7) 

Then for minimum of Jk following holds as long as input uk is unlimited: 
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J 0
U

k
T

∂
=

∂
 (A8) 

And substituting from (4) and (5) and several treatments leads into control matrix for 
whole prediction horizon 

( ) 1T TU G QG R G Q(W f )−
= + −  (A9) 

To choose only first control action at time instant k, we can, using zero and unit square 
matrices with size of number of inputs, form selection matrix 

[ ]I i i i

k I

e I 0 0
u e u

=
=

…
 (A10) 

Considering (4), the control action can be written as 

( ) ( ) ( )1 1T T T T
k I 1 k Iu e G QG R G Q f x e G QG R G QW− −
= + − + +  (A11) 

Introduction of closed loop gain matrix K = eI (GTQG+R)–1GTQf1 and feed forward part 
Kw = eI (GTQG+R)–1GTQW yields control law, consisting of state feedback and 
feedthrough components 

k ku Kx Kw= − +  (A12) 

So stability of the controlled system can be easily checked by condition for closed loop 
pole position for discrete system 

(M NK) 1eig − <  (A13) 

The equation (12) does not hold for MPC control with constraints, introduced in linear 
form 

HU LY b+ <  (A14) 

Which are solved by quadratic programming together with 
*

u ku arg min Jk =  (A15) 

In this case, (12) is only necessary stability condition, but not sufficient. There is no 
straightforward stability condition for such case. Approach based on numerically 
evaluated Lyapunov function (based on optimality criteria Jk extended into infinite time 
using discrete Ricatti equation) and its numerical time derivative can be used. Suitably 
large subspace of the state space must be selected. 
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Used symbols 

Symbol Unit Description 

a m.s–2 acceleration (– for deceleration) 
aa m.s–2 acceleration in driven (motor active) mode 
ad m.s–2 deceleration in coast-down mode (absolute value) 
sd m Length of acceleration phase 
sa m Length of deceleration phase 
v1 m.s–1 Section entry velocity 
v2 m.s–1 Constant velocity in the middle phase of the section 
v3 m.s–1 Velocity in the beginning of braking phase 
v4 m.s–1 Section output velocity 
scoa m Length of coasting down phase 
scon m Length of phase with constant velocity 
Jk – Optimality criterion for model predictive controller design 
yk – Vector of system outputs at discrete time k 
wk – Vector of required system outputs at discrete time k 
Qy – Optimality output weighting matrix 
Ry – Optimality input weighting matrix 
T s Sampling period 
M, N  Discrete linear dynamic system matrices 
A, B, C, D  Linear dynamic system matrices produced by linearisation 
An, Bn, Cn  Modified system matrices for predictive control design 
SOC  State of charge 
HVAC  Heating, ventilating, air-conditioning 
MPC  Model predictive control 
PACA  Predictive adaptive control algorithm 
VCU  Voltage control unit 

 


